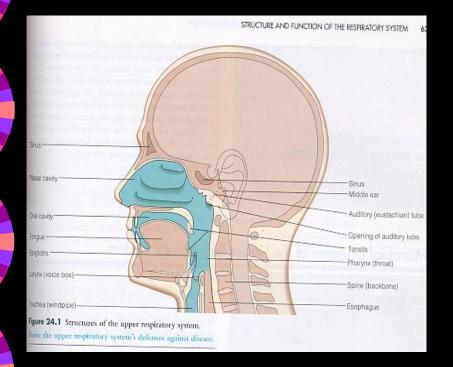
Microbial Mechanisms of Pathogenicity

Chapter 15

Pathogenicity - ability to cause disease Virulence - degree of pathogenicity

 Many properties that determine a microbe's pathogenicity or virulence are unclear or unknown

• But, when a microbe overpowers the hosts defenses, disease results!

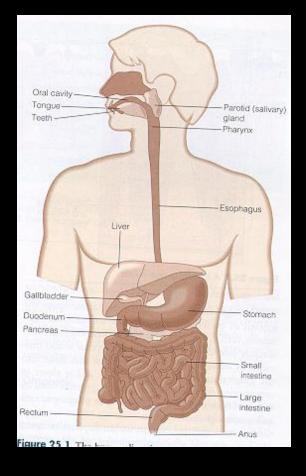

Portals of Entry

• 1. Mucus Membranes

• 2. Skin

• 3. Parentarel

1. Mucus Membranes


- A. Respiratory Tract
 - microbes inhaled into mouth or nose in droplets of moisture or dust particles
 - Easiest and most frequently traveled portal of entry

Common Diseases contracted via the Respiratory Tract

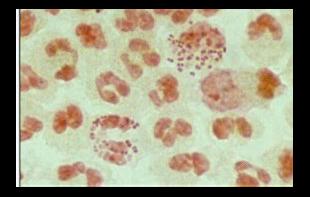
- Common cold
- Flu
- Tuberculosis
- Whooping cough
- Pneumonia
- Measles
- Strep Throat
- Diphtheria

Mucus Membranes

- B. Gastrointestinal Tract
 - microbes gain entrance thru contaminated food & water or fingers & hands
 - most microbes that enter the G.I. Tract are destroyed by HCL & enzymes of stomach or bile & enzymes of small intestine

Common diseases contracted via the G.I. Tract • Salmonellosis

- Salmonella sp.
- Shigellosis
 - Shigella sp.
- Cholera
 - Vibrio cholorea
- Ulcers
 - Helicobacter pylori
- Botulism
 - Clostridium botulinum


Fecal - Oral Diseases

• These pathogens enter the G.I. Tract at one end and exit at the other end.

 Spread by contaminated hands & fingers or contaminated food & water

• Poor personal hygiene.

Mucus Membranes of the Genitourinary System - STD's

Gonorrhea

Neisseria gonorrhoeae

Syphilis

Treponema pallidum

Chlamydia

Chlamydia trachomatis

HIV

Herpes Simplex II

Mucus Membranes

• D. Conjunctiva –

• mucus membranes that cover the eyeball and lines the eyelid

Trachoma

• Chlamydia trachomatis

2nd Portal of Entry: Skin

 Skin - the largest organ of the body. When unbroken is an effective barrier for most microorganisms.

 Some microbes can gain entrance thru openings in the skin: hair follicles and sweat glands

3rd Portal of Entry: Parentarel

- Microorganisms are deposited into the tissues below the skin or mucus membranes
- Punctures
- injections
- bites
- scratches
 - surgery
- splitting of skin due to swelling or dryness

Preferred Portal of Entry

• Just because a pathogen enters your body it does not mean it's going to cause disease.

pathogens - preferred portal of entry

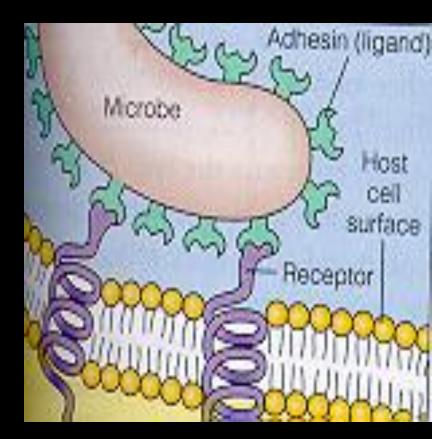
Preferred Portal of Entry

- Streptococcus pneumoniae
 - if inhaled can cause pneumonia
 - if enters the G.I. Tract, no disease

• Salmonella typhi

- if enters the G.I. Tract can cause Typhoid Fever
- if on skin, no disease

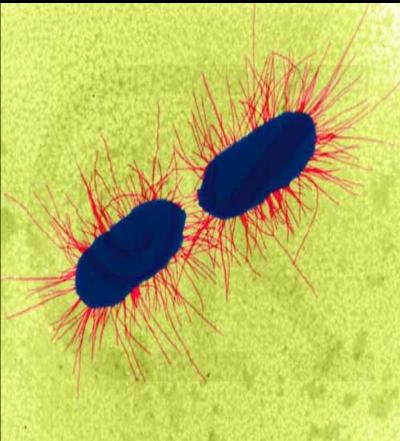
Number of Invading Microbes


- LD₅₀ Lethal Dose of a microbes toxin that will kill 50% of experimentally inoculated test animal
- ID₅₀ infectious dose required to cause disease in 50% of inoculated test animals
 - Example: ID_{50} for *Vibrio cholerea* 10⁸ cells (100,000,000 cells)
 - ID₅₀ for Inhalation Anthrax 5,000 to 10,000 spores ????

How do Bacterial Pathogens penetrate Host Defenses?

1. Adherence - almost all pathogens have a means to attach to host tissue

Binding Sites


adhesins ligands

Adhesins and ligands are usually on Fimbriae

 Neisseria gonorrhoeae
 ETEC (Entertoxigenic E. coli)

Bordetello pertussis

2. Capsules

K. pneumoniae

- Prevent phagocytosis
- attachment
- Streptococcus pneumoniae
- Klebsiella pneumoniae
- Haemophilus influenzae
- Bacillus anthracis
- Streptococcus mutans
- Yersinia pestis

3. Enzymes

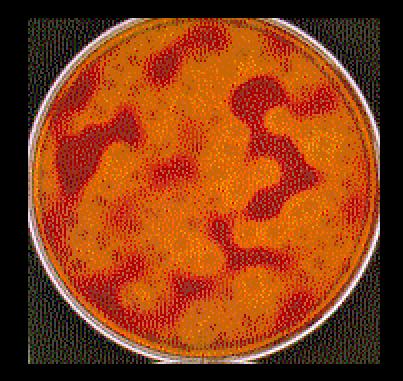
 Many pathogens secrete enzymes that contribute to their pathogenicity

A. Leukocidins

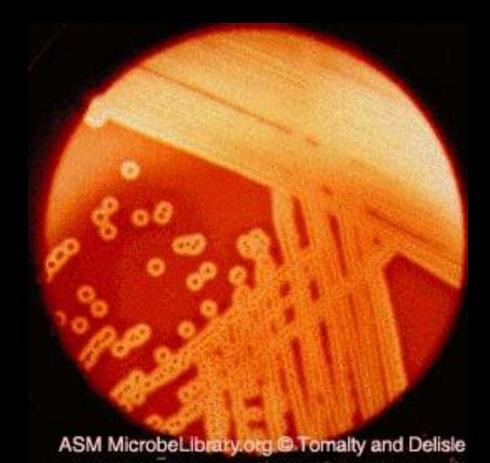
Attack certain types of WBC's

- 1. Kills WBC's which prevents phagocytosis
- 2. Releases & ruptures lysosomes
 - lysosomes contain powerful hydrolytic enzymes which then cause more tissue damage

B. Hemolysins - cause the lysis of RBC's


Streptococci

1. Alpha Hemolytic Streptococci


- secrete hemolysins that cause the incomplete lysis or RBC's

2. Beta Hemolytic Streptococci

- secrete hemolysins that cause the complete lysis of RBC's

3. Gamma Hemolytic Streptococci - do not secrete any hemolysins

C. Coagulase - cause blood to coagulate

 Blood clots protect bacteria from phagocytosis from WBC's and other host defenses

Staphylococci - are often coagulase positive

- boils
- abscesses

D. Kinases - enzymes that dissolve blood clots

- 1. Streptokinase Streptococci
- 2. Staphylokinase Staphylococci
- Helps to spread bacteria Bacteremia
- Streptokinase used to dissolve blood clots in the Heart (Heart Attacks due to obstructed coronary blood vessels)

E. Hyaluronidase

• Breaks down Hyaluronic acid (found in connective tissues)

"Spreading Factor"

 \blacklozenge

mixed with a drug to help spread the drug thru a body tissue

F. Collagenase

• Breaks down collagen (found in many connective tissues)

Clostridium perfringens - Gas Gangrene
uses this to spread thru muscle tissue

G. Necrotizing Factor

- causes death (necrosis) to tissue cells

"Flesh Eating Bacteria" Necrotizing fasciitis

Summary of How Bacterial Pathogens Penetrate Host Defenses

- 1. Adherence
- 2. Capsule
- 3. Enzymes
 - A. leukocidins
 - B. Hemolysins
 - C. Coagulase
 - D. Kinases
 - E. Hyaluronidase
 - F. Collagenase
 - G. Necrotizing Factor

4. Toxins

- Poisonous substances produced by microorganisms
- toxins primary factor pathogenicity
- 220 known bacterial toxins
 - 40% cause disease by damaging the Eukaryotic cell membrane

Toxemia

• Toxins in the bloodstream

2 Types of Toxins

• 1. Exotoxins

• secreted outside the bacterial cell

• 2. Endotoxins

• part of the outer cell wall of Gram (-) bacteria

Exotoxins

• Mostly seen in Gram (+) Bacteria

 Most gene that code for exotoxins are located on plasmids or phages

3 Types of Exotoxins

- 1. Cytotoxins
 - kill cells
- 2. Neurotoxins
 - interfere with normal nerve impulses
- 3. Enterotoxins
 - effect cells lining the G.I. Tract

Response to Toxins

- If exposed to exotoxins: antibodies against the toxin (antitoxins)
- Exotoxins inactivated (heat, formalin or phenol) no longer cause disease, but stimulate the production of antitoxin
 - altered exotoxins Toxoids
- Toxoids injected to stimulate the production of antitoxins and provide immunity

Example: DPT Vaccine

- D Diphtheria
 - Corynebacterium diphtheriae
- P Pertussis
 - Bordetello pertussis
- T Tetanus
 - Clostridium tetani

DPT - Diphtheria ToxoidPertussis AntigenTetanus Toxoid

Required Immunizations in Illinois

- 1. Diphtheria
 - 2. Pertussis
 - 3. Tetanus
- 4. Measles
 - 5. Mumps
 - 6. Rubella
 - German Measles
 - 7. Polio
- 8. Hib
 - 9. Hepatitis B
 - 10.Chicken Pox

- Corynebacterium diphtheriae
- Bordetello pertussis
- Clostridium tetani
- Measles virus
- Mumps virus
- Rubella virus
- Polio virus
- Haemophilus influenzae
- Hepatitis B Virus
- Varicella-zoster virus

P

Τ

Μ

Μ

R

Hib

HBV

Polio

Salk

Sabin

Type of Vaccines • D

- Toxoid
- Antigen
- Toxoid
- Attenuated
- Attenuated
- Attenuated
- ◆ IPV Inactivated Polio virus (Killed) 1953
- ◆ OPV Oral Polio vaccine (attenuated) 1964
- Conjugated vaccine
- Recombinant vaccine (antigen) yeast
 - Capsid produced by genetically engineered yeast
- Chicken Pox
- Attenuated

Most genes that code for exotoxins - plasmids or phages

- Lysogenic convergence
- Diphtheria
- Cytotoxin inhibits protein synthesis resulting in cell death
- Pseudomembrane
 - fibrin, dead tissue, bacterial cells

Lysogenic Convergence

- Scarlet Fever
- Streptococcus pyogenes
 - lysogenic convergence
- prophage
 - cytotoxin damages blood capillaries and results in a skin rash
 - Strep Thoat with a rash

Diseases caused by Neurotoxins

Botulism

- Clostridium botulinum
 - Gram (+), anaerobic, spore-forming rod, found in soil
- works at the neuromuscular junction
- prevents impulse from nerve cell to muscle cell
- results in muscle paralysis

AFRICA'S CHILD SOLDIERS THE REAL BARBARA BUSH

ewswe

A Once-Feared Poison Could Become the Next Billion-Dollar Drug. Is It Safe? And Why Are We So Vain?

May 13, 2002 : \$3,95

THE BUSINESS OF

#BXBCMDG*** CAR-RT LOT ** C-003

#000419976480014#MR03 N1-H BECKY AND STEVE NETT 306 N 5TH SPRING UALLEY IL 61362-1319 P00020K 017232

Tetanus (Lock Jaw) • *Clostridium tetani*

- Gram (+), spore-forming, anaerobic rod
- neurotoxin acts on nerves, resulting in the inhibition of muscle relaxation
- tetanospasmin "spasms" or "Lock Jaw"

Diseases caused by Enterotoxins

- Cholera
 - Vibrio cholerae
 - Gram (-) comma shaped rods

Cholera toxin

 Converts ATP into cAMP
 causes cells to excrete Cl⁻ ions and inhibits absorption of Na⁺ ions

- Electrolyte imbalance
- H₂O leaves by osmosis
 - H₂O Loss (Diarrhea)

Severe cases, 12 - 20 liters of liquid lost in a day

• Untreated cases - Mortality Rate about 50%

Mortality may be reduced to about 1%
administering fluids and electrolytes

EHEC (Enterohemorrhagic E. coli)

• E. coli (0157:H7)

- enterotoxin causes a hemolytic inflammation of the intestines
- results in bloody diarrhea
 - Toxin
 - alters the 60S ribosomal subunit
 - inhibits Protein Synthesis
 - Results in cell death
 - lining of intestine is "shed"
 - Bloody Diarrhea (Dysentary)

Endotoxins - part of the Gram (-) Bacterial cell wall

- LPS (Lipopolysaccharides)
 - O Antigen
 - Lipid A
- Lipid A Toxin portion of the LPS
 - responsible for Fever that is associated with many Gram (-) Bacterial infections
 - Gram (-) cells are "digested" endotoxins are released fever
 - Antibiotics