Microbial Growth

Chapter 6

Microbial Growth - refers to the # of cells, not the size of the cells

- Requirements for Growth
 - Physical
 - Chemical

Physical Requirements

Temperature

- psychrophiles (cold loving microbes)
 - range 0 C 20 C
- mesophiles (moderate temp. loving microbes)
 - range 20 C 40 C
- thermophiles (heat loving microbes)
 - range 40 C 100 C

• Most bacteria grow between pH 6.5 - pH 7.5

Very few can grow at below pH 4.0

 many foods, such as sauerkraut, pickles, and cheeses are preserved from spoilage by acids produced during fermentation

Osmotic Pressure

 Microbes obtain almost all their nutrients in solution from surrounding water

- Tonicity
 - isotonic
 - hypertonic
 - hypotonic

Macro & Micro Elements

C HOPKINS CaFe Mg NaCl

Oxygen

 Bacteria can be classified base on their oxygen requirements

1. Obligate Aerobes

2. Obligate Anaerobes

3. Facultative Aerobes

Facultative Anaerobes

4. Microaerophilic

Oxygen is lethal to some organisms

• All organisms produce superoxide (O₂-)

• Superoxide is toxic to cells (steals electrons)

Superoxide must be neutralized

Superoxide dismutase

• O_2 - + O_2 - + 2 H⁺ ----> H₂O₂ + O₂

 Hydrogen peroxide is also toxic to cells and it must be neutralized

Catalase

$2 H_2O_2 \longrightarrow 2 H_2O + O_2$

- Obligate Anaerobes lack:
 - Superoxide dismutase (SOD)
 - Catalase

Culture Media

1. Chemically Defined

- the exact chemical composition is known
- used to grow fastidious organisms
- 2. Complex Media
 - exact chemical composition is not known
 - most bacteria and fungi are grown with this

Special Culture Techniques

1. Anaerobic Bacteria

- a. Reducing Media
- b. Anaerobic Container
- c. Agar Stab
- d. Agar Shake

Special Culture Techniques

• 2. Microaerophilic Bacteria

- grow best under reduced O₂ levels and increased CO₂ levels
- Normal Atmosphere $21 \% O_2$
 - .3 to .03 % CO₂

Microaerophilic Bacteria A. Candle Jar

16 % O₂ 4 % CO₂

Microaerophilic Bacteria B. CO₂ Generating Packet

Selective Media

- Inhibits the growth of some bacteria while selecting for the growth of others
- Example:
 - Brilliant Green Agar
 - dyes inhibit the growth of Gram (+) bacteria
 - selects for Gram (-) bacteria
 - Most G.I. Tract infections are caused by Gram (-) bacteria

Selective Media

- EMB (Eosin Methylene Blue)
 - dyes inhibit Gram (+) bacteria
 - selects for Gram (-) bacteria
 - G.I. Tract infections caused by Gram (-) bacteria

Differential Media

- Differentiates between different organisms growing on the same plate
- Example:
 - Blood Agar Plates (TSA with 5% sheep blood)
 - used to differentiate different types of *Streptococci*

Alpha Hemolytic Streptococci

Incomplete lysis of RBC's

Beta Hemolytic Streptococci

Complete lysis of RBC's

Gamma Hemolytic Streptococci

No lysis of RBC's

Selective and Differential Media

- Mannitol Salt Agar
 - used to identify Staphylococcus aureus
- Mannitol Salt Agar
 - High salt conc. (7.5%) inhibits most bacteria
 - sugar Mannitol
 - pH Indicator (Turns Yellow when acid)

Selective and Differential Media

- MacConkey's Agar
 - used to identify Salmonella
- MacConkey's Agar
 - Bile salts and crystal violet (inhibits Gram (+) bacteria)
 - lactose
 - pH Indicator

Many Gram (-) enteric non-pathogenic bacteria can ferment lactose, *Salmonella* can not

Bacterial Growth - increase in the # of cells

Binary Fission

• Generation Time (Doubling Time)

- time required for a cell to divide
- most about 1 Hr. To 3 Hrs.
 - *E. coli* 20 minutes
 - Mycobacterium tuberculosis 24 Hrs.

Binary Fission - unchecked

- E. coli generation time of 20 min.
- 20 generations (about 7 hrs.)
 - 1 million cells
- 30 generations (about 10 hrs.)
 - 1 billion cells
- 72 generations (about 24 hrs.)
 - 1 x 10²¹
 - 1,000,000,000,000,000,000 cells

Limiting factors in the environment

- Lack of food, water or nutrients
- space
- accumulation of metabolic wastes
- lack of oxygen
- changes in pH
- temperature

Phases of Growth

4 Phases

- 1. Lag Phase
- 2. Log Phase
- 3. Stationary Phase
- 4. Death Phase

1. Lag Phase

- Bacteria are first introduced into an environment or media
- Bacteria are "checking out" their surroundings
- cells are very active metabolically
- # of cells changes very little
- 1 hour to several days

2. Log Phase

- Rapid cell growth (exponential growth)
- population doubles every generation
- microbes are sensitive to adverse conditions
 - antibiotics
 - anti-microbial agents

3. Stationary Phase

- Death rate = rate of reproduction
- cells begin to encounter environmental stress
 - lack of nutrients
 - lack of water
 - not enough space
 - metabolic wastes
 - oxygen
 - pH

Endospores would form now

4. Death Phase

• Death rate > rate of reproduction

• Due to limiting factors in the environment

Enumeration of Bacteria

• Turbid culture - 10 million bacterial cells per ml

Serial Dilution